Kriging-sparse Polynomial Dimensional Decomposition surrogate model with adaptive refinement
نویسندگان
چکیده
منابع مشابه
Adaptive surrogate model with active refinement combining Kriging and a trust region method
In the present paper an adaptive Kriging surrogate model with active refinement is proposed to solve component reliability analysis problems (i.e. with a single design point) with a reasonable limit for the dimensionality of the basic random variables space. The model uses an adaptive Kriging-based trust region method to search for the design point and predict the failure probability based on t...
متن کاملSparse Polynomial Decomposition
Polynomial decomposition is an important field of symbolic manipulation, and has been well-studied for the case of densely-represented polynomials, resulting in algorithms with near-linear complexity. Polynomial decomposition is supported in most computer algebra packages such as Maple, and in fact decompositions can be used to simplify some other algebraic problems. For instance, to find the r...
متن کاملCrack identification based on Kriging surrogate model
Kriging surrogate model provides explicit functions to represent the relationships between the inputs and outputs of a linear or nonlinear system, which is a desirable advantage for response estimation and parameter identification in structural design and model updating problem. However, little research has been carried out in applying Kriging model to crack identification. In this work, a sche...
متن کاملLU-Decomposition with Iterative Refinement for Solving Sparse Linear Systems
In the solution of a system of linear algebraic equations Ax = b with a large sparse coefficient matrix A, the LU-decomposition with iterative refinement (LUIR) is compared with the LU-decomposition with direct solution (LUDS), which is without iterative refinement. We verify by numerical experiments that the use of sparse matrix techniques with LUIR may result in a reduction of both the comput...
متن کاملMulti-objective optimization of coronary stent using Kriging surrogate model
BACKGROUND In stent design optimization, the functional relationship between design parameters and design goals is nonlinear, complex, and implicit and the multi-objective design of stents involves a number of potentially conflicting performance criteria. Therefore it is hard and time-consuming to find the optimal design of stent either by experiment or clinic test. Fortunately, computational m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2019
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2018.10.051